

Collaborator1

How to Minimize Risk:
The Payment Card Industry and Staying
Ahead of Regulatory Compliance

Whitepaper

https://smartbear.com/product/collaborator/overview/
https://smartbear.com
https://smartbear.com/product/collaborator/overview/

Collaborator2

Retailers are among the top targeted vertical markets for cyberattacks.

The retail industry is particularly attractive to hackers and security breaches, largely because

most retailers process customer credit and debit card information through their systems.[1]

In recent years, a data breach at Home Depot affected 56 million credit card accounts and

53 million email addresses, and the cost to the company was an estimated at $80M before

insurance reimbursements. Hackers gained access to the company's computer network using

stolen account information from a third-party vendor.[2]

Stories like that are a nightmare for companies.

The fiscal damage is bad enough, but who knows

how much damage is done to the brand, and

for how long. It can make people lie awake at

night asking, "Did I do everything possible to

ensure our software is as good as possible?"

Viruses, malicious code, password cracking, social

engineering, and other threats that are common

to most business networks must be considered

in designing PCI-related software systems. The

Common Weakness Enumeration (CWE) community

and the SANS Institute collaborated to identify and

list the Top 25 Most Dangerous Software Errors.

The study examined critical systems across

several highly targeted industries. The list ranks

the most widespread and critical errors that can

lead to serious vulnerabilities in software. They

are often easy to find, and easy to exploit.

These top 25 are dangerous because they

frequently allow attackers to completely take

over the software, prevent the software from

working, or just plain steal data.[1] If these errors

are easy to find and exploit, why are they not

caught before the software is released?

The problem is complexity

As systems become more capable, it becomes
harder to test all the ways they will be used.
Once you test software and fix all the problems
found, the software will always work under
the conditions for which it was tested.

Test-and-fix approaches are vital, dynamic testing
methods. Whether performed on individual
units or the entire system, dynamic approaches
that test the code in action share one common
shortcoming: they all rely on test cases.

Test case scenarios are constructed from the same
source documents that developers use, such as
requirements and specification documents. These
documents are much more comprehensive at defining
what the finished product should do, rather than what
it shouldn’t do. Developers inject about 100 defects
into every 1,000 lines of the code they write.[2]

Seemingly insignificant changes in software code can
create unexpected and very significant vulnerabilities
elsewhere in the software program. Many of
these defects will have no impact on the test case
scenarios designed for testing. Yet, they could have
devastating, unforeseen effects in the future.

https://smartbear.com/product/collaborator/overview/

Collaborator3

If quality can’t be tested,
then what?

Software quality assurance should focus on
preventing the introduction of defects into the
software development process, rather than trying to
‘test quality into’ the software code after it is written.
Where testing methods fail, the best approach is
direct examination of the code and related artifacts.

Examination activities typically include:

 | Walk-throughs and peer reviews

 | Automated code analyses

 | Code and document inspections

 | Module-level testing

 | Integration testing

Code walk-throughs and peer reviews are systematic
examinations of the source code. Code reviews can
often find and remove common vulnerabilities that
dynamic testing miss – such as format string exploits,
race conditions, memory leaks and buffer overflows,
which lead to security and functionality problems.

While some believe analysis of the code is best done
by automated tools, code reviews are actually more
effective at finding errors than automated tools. Most
forms of testing only average about 30% to 35% in its
defect removal efficiency levels, and seldom top 50%.
Formal design and code inspections, on the other
hand, can achieve 95% in defect removal efficiency.[3]

Peer reviews give you proof
of compliance for audits

Measuring defect removal is critical to proving
compliance. The challenge, whether done through
dynamic testing or direct examination, is that a
developer cannot test forever, and it is hard to
know how much evidence is enough. Measures

such as the number of defects found in
specifications documents, estimates of defects
remaining, testing coverage, and other metrics
are all used to develop an acceptable level of
confidence before shipping the product.

While safety is the primary measure, the process
should also be sufficient to prove compliance in an
audit or litigation scenario. “The important point is
that during the software design and development
process, think in terms of risks associated with
the application, thus reasonably anticipating
threats to the security of the application.”[4]

Code reviews should be in writing, online,
and indexed for easy retrieval – otherwise,
there is no proof they have been performed.
Statements about the code in general, specific
lines and specific issues should all be tied to the
person, time, and date of their identification.
If needed, this data should be presented
as both comments and metrics to allow for
accounting of the development process.

Source code evaluations should be extended to
verification of internal linkages between modules
and layers (horizontal and vertical interfaces) and
the compliance with their design specifications.
Documentation of the procedures used and
the results of source code evaluations should
be maintained as part of design verification.

Code reviews should be supported by document
reviews. Teams should review user stories,
test plans, and other artifacts as part of the
review process, and flag regulatory issues in
the review to ensure they are considered.

Code reviews should be in writing, online, and

indexed for easy retrieval — otherwise, there is no

proof they have been performed.

https://smartbear.com/product/collaborator/overview/

Collaborator4

One of the most important contributions a company
can make toward the successful adoption of code
reviews is the set of tools it. The right tools enable
each development team to find its own best
method for code reviews, enabling a bottom-up
approach to code review design and potentially
gaining in quality and regulatory compliance.

Look for these characteristics in a code review tool:

1. Support team-designed rules and processes.
Teams should be able to determine review intervals,
workflows, and specific tasks to accomplish during
the review while the tool supports and manages
adherence.

2. Support each team’s preferred mode of
interaction. Whether it is side-by-side, remote
real-time, asynchronous, or a combination, the team
should decide. The tool should support before and
after views of code and document changes and
threaded contextual chat with references to files and
line numbers.

3. Support for multiple IDEs. To make reviews
a “normal” part of developers’ work routines,
developers should not need to leave their “regular”
development environment to review code. Nor
should the team need to change code review tools if
they change IDEs in the future.

4. Provide seamless integration with SCM systems.
To start reviews easily and expedite them, developers
should be able to point to the code that needs review
and have those files extracted automatically. Tools
add tangible value to this process by automating
the collection and distribution of these files.

5. Ensure documents are integrated within the
review process. A standardized peer review
process enables all project-related documents
(e.g. PDF, MS Office, HTML, images, schematics,
intranet and web-based document management
system) to be reviewed the same way, making
document reviews less frustrating for developers.

While thousands of organizations have
successfully implemented and defended peer
code reviews successfully, many have failed.
The difference often comes down to poor
implementation strategies. And they are all
issues that can be readily addressed:

 | Reviews are too long. After just a few hours,
attention wanders. All-day code reviews can
seem almost painful. Keep reviews short and no
more than one or two hours per day. Developers
can review between 150 and 300 lines of code,
depending on complexity. Not surprising, this
rate of review also provides the highest rate of
defects identified per line of code (defects / LOC).

 | Reviews are seen as an additional task.
Especially when a review backlog builds up. Rather
than let them become a bottleneck, make reviews
a daily activity or take them as they come in.

 | Comments are seen as subjective. It is
easy to discount a colleague’s comments
and disregard their opinion. Make it easy for
reviewers to annotate the specific code in
question and to get other reviewers to weigh in.

 | Remote reviews can be challenging.
Distributed teams are a given, especially
post-covid, and bringing teams together for
reviews goes against the need for regular, brief
reviews. Instead, facilitate remote reviews with
tools designed for remote collaboration.

 | Documentation is not automated. The
administrative burden of documenting,
archiving, and distributing this living
document can be overwhelming. Use tools
that make compliance documentation an
automatic by-product of the review.

Companies successful with adopting code review
facilitate the needs of developers first, then let the
needs of the project and company naturally follow.

https://smartbear.com/product/collaborator/overview/

Collaborator5

for an additional reason. They make the
code easier to understand and change.

An analysis of data from a recent code inspection

experiment shows that 60% of all issues raised in

code inspections are problems that would not

have been uncovered by latter phases of testing or

field usage because they have little or nothing to do

with the visible execution behavior of the software.

Rather, they improve the maintainability of the

code by making the code conform to coding

standards, therefore minimizing redundancies,

improving language proficiency, improving safety

and portability, and raising the quality of the

documentation — benefits not possible through

automated testing.[7]

In conclusion
The goal of regulatory compliance is to minimize
risk for the consumer, but it can benefit the
software organization as well. A compliance
strategy that utilizes peer code reviews creates
an environment of shared understanding
and collaboration. As developers review and
comment on each others’ code, they all improve.
In the end, code review provides a platform
for continuous process improvement,
leading to better standards, better
developers, and enhanced efficiency.

So while a systematic code-review process can help
the organization prove compliance, it will certainly
lead to higher quality finished product – which
can help avoid a security event in the first place.

6. Enable accurate reporting. Meaningful
metrics play a critical role in the reporting
process to indicate progress and current
status. Useful metrics used in meeting review
milestones and audit requirements include
man-hours spent in review, defect data, and
lines of code inspection, as well as review
approval and electronic signature status.

Different Methodologies,
Different Paper

It should be noted that this paper has steered
away from discussing any particular software
development methodology. A peer code-review
process can be implemented within waterfall, Agile
and other methodologies with equal success. The
point here is that, not only will implementing peer
code reviews make the products your company
produces better, it will make the processes and
the people that produce them better as well.

Code reviews are a powerful tool for eliminating
defects, but achieving compliance can be
burdensome. Even in organizations where
code reviews have been “adopted,” they
are skipped as much as 30% of the time,
primarily because of inadequate support.[5]

Too often, organizations believe they can have
ad-hoc development processes, and then use an
inspection procedure at the end to remove all
defects. That will not happen. Industry statistics
indicate that for every four errors pulled out, one
new error is injected. Therefore, only portions
of defects are actually removed at the end of
the implementation process. To approach zero
defects, inspection must be an iterative process.[6]

For years, it was believed that the value of
inspections is in finding and fixing defects.
However, in examining code inspection data, it
becomes clear that inspections are beneficial

A peer code-review process can be implemented

within waterfall, Agile and other methodologies

with equal success.

https://smartbear.com/product/collaborator/overview/

Start Your Free Trial Today

Reach your team's maturity goals faster.

About SmartBear
At SmartBear, we focus on your one priority that never changes: quality. We know delivering quality software over

and over is complicated. So our tools are built to streamline your DevOps processes while seamlessly working with

the products you use – and will use. Whether it’s TestComplete, Swagger, ReadyAPI, Cucumber, Zephyr, Bugsnag, or

one of our other tools, we span from test automation, API lifecycle, collaboration, performance testing, test ma-

nagement, app stability and error monitoring, and more. Whichever you need, they’re easy to try, easy to buy, and

easy to integrate. We’re used by 16 million developers, testers, and operations engineers at 32,000+ organizations

– including world-renowned innovators like Adobe, JetBlue, FedEx, and Microsoft. Wherever you’re going, we’ll help

you get there. Learn more at smartbear.com, or follow us on LinkedIn, Twitter, or Facebook.

Citations:

1. “NTT Security intelligence report finds
organizational attacks becoming more
sophisticated,” SecurityInfoWatch, January 25, 2017.

2. “11 Data Breaches That Stung US Consumers,”
Bankrate.com

3. “2011 CWE/SANS Top 25 Most Dangerous
Software Errors,” September 2011

4. “The Software Quality Challenge,”
Watts S. Humphrey, CrossTalk, June 2008

5. “Measuring Defect Potentials and Defect
Removal Efficiency,” Capers Jones, CrossTalk,
June 2008

6. “Application Security – Next Layer of
Protection,” October 13, 2003, Keith Pasley,
CISSP, developer.com

7. Mario Bernhart, Andreas Mauczka, Thomas
Grechenig Research Group for Industrial Software
(INSO) Vienna University of Technology, Austria, 2010

https://smartbear.com/product/collaborator/free-trial/
https://smartbear.com/product/collaborator/overview/
https://smartbear.com
https://www.linkedin.com/company/smartbear-software
https://twitter.com/smartbear
https://www.facebook.com/smartbear
https://smartbear.com

