
Collaborator1

Tackling ISO 26262
with Collaborative Code
and Document Reviews

Whitepaper

https://smartbear.com/product/collaborator/overview/
https://smartbear.com

Collaborator2

The Role of Safety Standards:
ISO 26262 and Automotive SPICE

Of course, functional safety standards exist to

attempt to prevent these kinds of accidents.

Automotive Original Equipment Manufacturers

(OEMs) in the US have to comply with industry

standards like ISO 26262 by incorporating

quality management features throughout

their product development process. Other

companies, depending on their location, may

also need to include considerations for the

similar but distinct standard, Automotive

SPICE®. These standards have quality and risk

management expectations for each step in

the development lifecycle, from initial product

design through software development and

production. The initial version of ISO 26262

was published in 2011; and next year, edition

2 of ISO 26262 will be released. [1.3] In order to

streamline some compliance considerations,

it is being reported that edition 2 will group

process-related requirements into one section,

require a communication channel between

functional safety and related disciplines, and

expand its scope to cover motorcycles, trucks &

buses, autonomous systems, and semiconductors.

Because the standards focus so much on risk

assessment and quality management, what

the part is doesn’t matter as much as how the

part is developed. Still, as new technologies

hit the market, the how is changing too.

For example, with the Internet of Cars on the

horizon, what additional quality management

features will the industry need to incorporate

in order to address network security concerns?

Today, every car is comprised of hundreds of

programmable computing elements and millions

of lines of code.[1.4] If the existing standards

can’t prevent software bugs from creating air

bag malfunctions, what chance do they have at

mitigating risk when human drivers take a literal

backseat? Yes, the standards are changing, but

maybe not fast enough.

Now, automotive companies will need to step

up more when it comes to managing the quality

of their software. Even the best developers will

create bugs after coding a certain number of

One death, two injuries, and 1.25 million pickup trucks recalled. Just this past May, Fiat Chrysler had to

face the tragic ramifications of an error in their software. In rollovers, the side air bags and seat belt

pretensioners in a number of their Ram pickups were malfunctioning. This problem only came to light

after a suit was filed at the end of 2016, regarding the failed air bag deployment in the rollover crash of

a 2014 Ram 1500. [1.1] With the recall already underway, the focus turns to the process at Fiat Chrysler

and the other automotive companies involved.

Last September, General Motors also had to issue a recall of nearly 4.3 million vehicles because of

software defects with their air bags. [1.2] They only discovered the issue after a crash killed one person

and injured three. Were these crashes that spurred massive recalls the kind of scenarios that should

have reasonably been anticipated and tested? Probably, but even if they absolutely were, a disconnect

between their code review and testing processes was evident and dangerous.

https://smartbear.com/product/collaborator/overview/

Collaborator3

lines. With more source code being created in the

automotive industry than ever before, the risk has

never been higher. If you start with the reasonable

assumption that defects are inevitable, then the

question really becomes how you can identify

and fix them early enough that they don’t reveal

themselves in a tragic accident and expensive recall.

The Functional Safety
Standards Pillars

Software product quality assurance in the

automotive industry has been intertwined with

process assurance for more than 40 years.

ISO 26262 provides the guidelines for safety

assurance in new product planning, from concept

through decommissioning. The core pillars of this

standard are Automotive Safety Integrity Levels

(ASILs) ratings, verification, and validation.

The ASIL Rating System

Specific to the automotive industry, ASIL ratings are

a means of prioritizing areas of risk mitigation. The

risk levels are ranked highest to lowest as ASIL D,

ASIL C, ASIL B, ASIL A, and QM (Quality Managed).

While risk level is important for determining

the overall ASIL Hazard and process impact to

your organization, the same outcome of hazard

elimination is expected to be consistent across

the scale. Before you can start building the Safety

Case for your development process, you need to

first determine the dependability requirements for

your system, based on the following criteria. [1.5]

The three ASIL dimensions:

1. The probability of exposure to harm should
the system fail.

2. The controllability of the situation upon exposure.

3. The severity of the resulting harm should
the situation not be controlled.

Moving forward, controllability will be an interesting

area to watch as assisted and self-driving

capabilities become mass market technologies.

With no driver, controllability decreases dramatically

and increases ASIL risk levels across the board.

Verification & Validation

Verification is the demonstration that the

designed model or code satisfies specifications

and requirement, while also not including any

unintentional functionality.

In practice, this process is often a combination

of reviews, static analyses, and comprehensive

functional testing at the model level.

Software testing is one of several verification

activities intended to confirm that the software

development output meets its input requirements.

As Capers Jones points out, "A synergistic

combination of formal inspections, static analysis

and formal testing can achieve combined defect

removal efficiency levels of 99%." [1.6] Where

tool assisted peer review stands out is in code

and document inspections as well as providing

a central location for reviewing test cases,

plans and the results of static analysis tools.

While some believe static analysis of the code

is best done by automated tools, code reviews

are actually more effective at finding errors than

automated tools. Most forms of testing average

only about 30% to 35% in defect removal efficiency

levels and seldom top 50%. Formal design and

code inspections, on the other hand, can achieve

95% in defect removal efficiency. [1.7]

There are even some verification requirements

that can only be satisfied by code review.

“While analysis may be used to verify that

all requirements are traced, only review can

determine the correctness of the trace between

https://smartbear.com/product/collaborator/overview/

Collaborator4

every 1,000 lines of the code they write. [1.6] Many

of these defects will have no impact on the test

case scenarios designed for testing. Yet, they could

have devastating, unforeseen effects in the future.

ISO 26262 does not go into detail as to how code

reviews and evaluations should be performed.

While thousands of organizations have successfully

implemented and defended peer code reviews

successfully, many have failed. The difference

most often comes down to poor implementation

strategies that can be readily addressed:

 | Reviews are too long. After just a few hours,

attention wanders and effectiveness decreases.

Allday code reviews can seem almost painful.

Keep reviews short, no more than one or two

hours per day. In that time, developers will be

able to review between 150 and 300 lines of code,

depending on complexity. Not surprising, this

rate of review also provides the highest rate of

defects identified per line of code (defects / LOC).

 | Reviews are seen as an additional task. It is

especially true when a review backlog builds up.

Rather than let them become a bottleneck, make

reviews a daily activity or take them as they come

in. Let the code review serve as a break from a

hard problem or a way to transition between tasks.

 | Comments are seen as subjective. It is

easy to discount a colleague’s comments as

just their opinion. Make it easy for reviewers

to annotate the specific code in question

and to get other reviewers to weigh in.

 | Remote reviews can be challenging. Distributed

teams are a given, and bringing teams together

for reviews is at odds with the need for regular,

brief reviews. Instead, facilitate remote reviews

with tools designed for remote collaboration

in general and peer code review, specifically.

requirements because human interpretation

is required to understand the implications

of any given requirement. The implications

must be considered not only for the directly

traced requirements but also for the untraced

but applicable requirements. Human review

techniques are better suited to such qualitative

judgments than are analyses.” [1.8]

In addition to code reviews, document

reviews are needed throughout the software

development process to ensure that the

Software Development Plan is being followed.

When choosing a peer review tool, make sure

that the solution you select can handle both

code and document reviews.

The Problem is Complexity

As systems become more capable, it becomes

harder to test all the ways they will be used in

advance. Once you test software and fix all the

problems found, the software will always work

under the conditions for which it was tested. The

reason there are not more software tragedies

is that testers have been able to exercise these

systems in most of the ways they will typically

be used. But all it takes is one software failure

and a subsequent lawsuit to seriously damage a

company’s reputation. Test-and-fix approaches

are vital dynamic testing approaches. Whether

performed on individual units or the entire

system, these dynamic approaches share one

common shortcoming: they all rely on test cases.

Test case scenarios are constructed from

the same source documents that developers

use, such as requirements and specification

documents. These documents are much more

comprehensive at defining what the finished

product should do, rather than what it shouldn’t

do. Developers inject about 100 defects into

https://smartbear.com/product/collaborator/overview/

Collaborator5

4. Ensures that documents are integrated within
the review process. A standardized peer review

process enables all project-related documents

(e.g. PDF, MS Office, HTML, images, schematics,

intranet and web-based document management

system) to be reviewed the same way, making

document reviews less frustrating for developers.

5. Enables accurate reporting. Meaningful

metrics play a critical role in the reporting

process to indicate progress and current

status. Useful metrics used in meeting review

milestones and audit requirements include

man-hours spent in review, defect data, and

lines of code inspected, as well as review

approval and electronic signature status.

6. Keep Review checklists (if used) short –
contain no items that are obvious or can be

detected via automation, and should focus

on things that are easy to forget (e.g. “Are all

errors handled correctly everywhere?”).

It should be noted that this paper has steered

away from discussing any particular software

development methodology. A peer code review

process can be implemented within waterfall,

Agile and other methodologies with equal

success. The point to focus on is that not only

will implementing peer code reviews make the

products your company produces better, it will

make the processes and the people that produce

them better as well. Code reviews are a powerful

tool eliminating defects, but achieving compliance

can be burdensome. Even in organizations where

code reviews have been “adopted,” they are

skipped as much as 30% of the time, primarily

because they are inadequately supported. [1.9]

 | Documentation is not automated.
The administrative burden of documenting,

archiving and distributing this living document

can be overwhelming. Use tools that make

compliance documentation an automatic

by-product of the review.

One of the most important contributions a

company can make to successful adoption of

code reviews are the tools it provides its teams.

The right tool set will enable each development

team to find its own best way to do code reviews,

enabling a bottom-up approach to code review

design and ensuring fuller achievement of

potential gains and regulatory compliance.

Some Characteristics of a Code
Review Tool Set to Look for Include:

1. Supports team-designed rules and processes.
Teams should be able to determine review

intervals, workflows and specific tasks to be

accomplished during the review while the

tool supports and manages adherence.

2. Supports each team’s preferred mode of
interaction. Whether side-by-side, remote real-

time or asynchronous, or a combination, the

team should decide. The tool should support

before and after views of code and document

changes and threaded contextual chat with

references to files and line numbers.

3. Provides seamless integration with SCM
systems. To start reviews easily and expedite

them, developers should be able to point to

the code that needs review and have those files

extracted automatically. Tools add tangible value

to this process by automating the collection and

distribution of these files.

https://smartbear.com/product/collaborator/overview/

Collaborator6

Too often, organizations believe they can have ad-hoc

development processes, and then use an inspection

process at the end to remove all defects. It just will

not happen. Industry statistics indicate that for every

four errors pulled out, one new error is injected.

Therefore, only portions of defects are actually

removed if the attempt is applied only to the end

of the implementation process. To approach zero

defects, inspection must be an iterative process. [1.10]

For years, it was believed that the value of

inspections is in finding and fixing defects.

However, in examining code inspection data, it

becomes clear that inspections are beneficial

for an additional reason. They make the code

easier to understand and change. An analysis of

data from a recent code inspection experiment

shows that 60% of all issues raised in the code

inspections are not problems that could have

been uncovered by latter phases of testing or field

usage because they have little or nothing to do with

the visible execution behavior of the software.

Rather they improve the maintainability of the

code by making the code conform to coding

standards, minimizing redundancies, improving

language proficiency, improving safety and

portability, and raising the quality of the

documentation — benefits which are not possible

from automated testing. [1.11]

In Conclusion

Peer reviews create an environment of shared

understanding and collaboration. As developers

review and comment on each other’s code,

whether in real-time or asynchronously, they all

get better. In the end, the code review provides

a platform for continuous process improvement,

leading to improved standards, better developers,

better efficiency, a higher quality finished product,

and the peace of mind that comes from knowing

the organization can prove compliance.

Start Your Free Trial Today

Reach your teams’ CMMI goals faster.

About SmartBear

At SmartBear, we focus on your one priority that never changes: quality. We know delivering quality software over and

over is complicated. So our tools are built to streamline your process while seamlessly working with all the tools you

use – and will use. Our tools are easy to try, easy to buy, and easy to integrate. We’re used by over 16 million developers,

testers, and operations engineers at over 24,000 organizations. Wherever you’re going, we’ll help you get there.

Endnotes

1. “Fiat Chrysler recalls 1.25 million trucks over
software error,” David Shepardson & Nick Carey,
Reuters, May 2017.

2. “GM recalls 4.3 million vehicles over air bag-
related defect,” David Shepardson, Reuters,
September 2016.

3. “Keeping up with design: ISO 26262 – time
for an update,” Peter Els, Automotive IQ, March
2017.

4. “The future of the modern car is actually
digital,” Bob O’Donnell, Recode, May 2017.

5. “Understanding ISO 26262 ASILs,” Chris Hobbs
& Patrick Lee, Electronic Design, July 2013.

6. “Combining Inspections, Static Analysis and
Testing to Achieve Defect Removal Efficiency

Above 95%,” Capers Jones, January 2012.

7. “Measuring Defect Potentials and Defect
Removal Efficiency,” Capers Jones, CrossTalk, June
2008.

8. An Analysis of Current Guidance in the
Certification of Airborne Software”, Ryan Erwin
Berk, MIT, 2009.

9. Mario Bernhart, Andreas Mauczka, Thomas
Grechenig Research Group for Industrial Software
(INSO) Vienna University of Technology, Austria,
2010.

10. Quality Processes Yield Quality Products,
”Thomas D. Neff, Cross Talk, June 2008.

11. “Does the Modern Code Review Have Value?
”H. Siy, Software Maintenance 2009.

https://smartbear.com/product/collaborator/free-trial/
https://smartbear.com
https://smartbear.com

